
All Evaluation of Sorting as a Supercomputer Benchmark

(preliminary version)

Report RNR-93 01)2, January 29, 1993.

Guy E. Blelloch 1, Leonardo Dagum 2, Stephen J. Smith 3, Kurt Thearling 3, Marco Zagha I

NASA Ames Research Center

Moffett Field, CA 94035

Abstract

We propose that sorting be considered an important benchmark for both scientific and com-

mercial applications of supercomputers. The purpose of a supercomputer benchmark is to

exercise various system components in an effort to measure important performance charac-

teristics. In the past numerous benchmarks have been defined in an effort to measure the

performance issues associated with numeric computing. These benchmarks stressed arith-

metic operations (in particular, floating-point arithmetic). In recent years supercomputers

manufactures have started to look closer at non-numeric processing tasks, such as databases

and information retrieval. Tile ability to operate on large amounts of non-numeric data will

be crucial in tile future. This paper discusses the appropriateness of sorting as a benchmark

for non-numeric computing tasks. The paper describes previous work in this area and defines

a set of architecture independent sorting benchmarks.

1School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213. This research was
sponsored in part by the Avionics Laboratory, Wright Research and Development Center, Aeronautical
Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, Ohio 45433-6543 under Contract F33615-
90-C-1465, ARPA Order No. 7597

2NASA Ames Research Center, Moffett Field, CA 94035. The author is an employee of Computer Sciences
Corp. Work funded by NASA Contract NAS 2-12961.

3Thinking Machines Corporation, 245 First Street, Cambridge, MA 02143.

An Evaluation of Sorting

as a Supercomputer Benchmark

(preliminary version)

Abstract:

We propose that sorting be considered an important benchmark for both scientific

and commercial applications of supercomputers. The purpose of a supercomputer bench-

mark is to exercise various system components in an effort to measure important per-

formance characteristics. In the past numerous benchmarks have been defined in an

effort to measure the performance issues associated with numeric computing. These

benchmarks stressed arithmetic operations (in particular, floating-point arithmetic). In

recent years _supercomputers manufactures have started to look closer at non-numeric

processing tasks, such as databases and information retrieval. The ability to operate on

large amounts of non-numeric data will be crucial in the future. This paper discusses

the appropriateness of sorting as a benchmark for non-numeric computing tasks. The

paper describes previous work in this area and defines a set of architecture independent

sorting benchmarks.

Contact: Kurt Thearling

phone: (617) 234-1000, fax: (617) 234-4444

kurt@think.com

1 INTRODUCTION , 2

1 Introduction

Although sorting is one of the most studied problems in computer science, it has received relatively

little attention in the field of supercomputing. Traditional vector supercomputers have been used

primarily for numerical analysis and the processing of large, regular arrays. Sorting, on the other

hand, is associated with non-numeric applications that typically offer little vectorization and tradi-

tionally have been implemented on scalar computers. The newer class of parallel supercomputers,

• however, do not rely as heavily on vectorization to achieve speedup. As such they have become

attractive platforms for very large scale non-numeric applications capable of solving problems that

previously were considered intractable. It seems then that the inclusion of sorting as a supercom-

puter benchmark is both timely and appropriate. In this paper we propose a formal, architecture

independent description of sorting applications and introduce a set of specific benchmark cases with

which sorting performance can be fairly evaluated. Our hope is that this work win be of benefit in

evaluating both sorting algorithms and the computer architectures that they are implemented on.

There are several features of sorting which make it a desirable benchmark. First, it is simply

described and well known as a problem; second, it can be easily scaled in size to provide progressively

more difficult benchmarks, and lastly, by its nature, it exercises a system's ability to compare and

move large amounts of data -- often the most expensive portion of any scientific or commercial

application. In a parallel processing system, this ability to move data corresponds to the bisection

bandwidth of the system [22]. In both shared and distributed memory machines the ability to

move data efficiently will dictate performance in many commercial applications. Sorting could be

considered the prototypical benchmark of data movement performance without having to create a

contrived example.

In addition to overall speed there are many issues involved in defining a sorting benchmark,

including: Stability, determinism, memory efficiency, load balancing of the sorted data and the

difficulties in extending the sort to perform a rank or to sort complex non-integer keys. In this paper

we use the above six descriptors to define the sort being used and then evaluate its performance along

four different dimensions: number of keys, key size, distribution of key values and initial allocation

of data to memory.

For these benchmarks we have focused on the likely sorting applications that would be performed

on supercomputers available today or in the near future. In general this means that we have focused

on relatively large sorting problems of approximately 100,000 to over 10 billion keys that range in

size from 8 to 256 bits. This seems to characterize the spread of sorting cases encountered today

in both scientific and commercial applications, and pushes just slightly into what we can expect

supercomputers to be capable of in the near future. Even an in-memory sort of 10 billion 256

bit keys should be pc_ible soon with technological advances in memory capacity. The current

generation of supercomputers are being built with tens to hundreds of gigabytes per system and in

2 PREVIOUS WORK 3

the near future we will undouhtably see a supercomputer with a terabyte of RAM. We are today

not that fat away as a number of recently published results describe where at least 1 billion keys

have been sorted on existing supercomputers [3, 37].

This paper is broken up into four main sections. In the next section we review previous work

in using sorting as a benchmark. In the second section we give an overview of some of the most

common internal sorting implementations and provide a high level taxonomy, breaking the various

systems into counting sorts (e.g. radix), fixed-topology sorts (e.g. bitonic), and partitioning sorts

(e.g. sample sort). The fourth section of our paper formalizes the six descriptors that define a "sort"

and introduces four parameters that when varied can have significant impact on sorting performance.

The fifth section introduces a set of specific benchmarks helpful in determining the performance of

a sorting implementation over a wide range of variations along these four dimensions.

2 Previous Work

Benchmarks can be considered useful for comparing computer performance only when the bench-

mark problems are representative of the workload. Because supercomputers traditionally have been

employed for numerical analysis, supercomputer benchmarks have emphasized numerical algorithms.

None of the early benchmarks, including the Livermore Fortran Kernels [26], the Linpack Bench-

mark [14], the original NAS Kernels [4], or the PERFECT Club [7] have included sorting as a

benchmark. All of these benchmarks, however, were conceived and designed primarily for vector

supercomputers, (although recently some results from distributed memory parallel computers have

been reported). The only existing supercomputer benchmark designed from the outset for parallel

computers is the NAS Parallel Benchmarks [5]. It is significant that this benchmark not only is the

most recent, but also is the only one to include a sorting kernel.

Although not the first to suggest sorting as a benchmark for parallel computers, the NAS Par-

allel Benchmarks represent the first instance where a sorting benchmark has received widespread

acceptance by the supercomputing community. Sorting as a parallel computer benchmark was first

suggested by Francis and Mathieson [15]. However, the primary goal of that work was to present a

parallel merge algorithm with practical application to sorting on a shared memory multiprocessor,

and not to outline a sorting benchmark for parallel computers. Sorting on vector computers was in

effect used as a benchmark by RSusch and Strauss [32], where the sorting performance of several

Amdahl and Cray systems was compared. As a benchmark, however, that work met with limited ac-

ceptance and performance figures for only two other systems (IBM [10] and ETA [27]) were reported.

The problem considered for that work was that of sorting N random numbers uniformly distributed

in the interval (0,I) using seven different sorting algorithms. Francis and Mathieson also had sug-

gested uniformly distributed random numbers for their sorting benchmark. Unfortunately, few real

world data distributions are uniform, and the sorting performance observed on uniformly distributed

3 SORTING ALGORITHMS 4

data generally will not be representative of the performance achieved on non-uniform data distri-

butions. This is especially true on parallel machines where, at least for some sorting algorithms,

non-uniformity in the data will lead to poor load balance and consequently poor performance.

The sorting kernel in the NAS parMlel Benchmarks attempts to overcome this deficiency by

purposely specifying a non-uniform data distribution created as the average of 4 random numbers in

the interval (0,219]. The result is an approximate Gaussian distribution with variance 2s2/3. The

variance can be decreased by increasing the number of random numbers averaged; however just the

one distribution is considered for the benchmark.

There are at least three criticisms one can make of this kernel from the point of view of establishing

a general sorting benchmark. This kernel was originally proposed because of its significance in

parallel implementations of Monte Carlo simulations of neutral gases where only integer sorting

is required. For this reason, it is not a general sorting benchmark, but a small integer sorting

benchmark. In other words, the benchmark sorts integers in the restricted range (0,219] rather

than the full word range (0, 2s_]. This restriction on the range would not be an important criticism

however, if the benchmark did not also allow unstable sorting. An efficient stable small integer sort

can easily be used in building a radix sort. For a stable sort, one can extrapolate the performance

of a machine for sorting on the full range given the performance on the restricted range. This,

however, is not true for unstable sorts. The third and most relevant criticism is that just a single

distribution with only moderately non-uniform data is considered. In real world applications the data

distributions can have much greater non-uniformity, and to accurately gauge the performance of a

system for general sorting problems one would like to benchmark it over a wide range of distributions.

This paper describes a methodology for generating distributions of arbitrary non-uniformity to be

used for a general sorting benchmark.

3 Sorting Algorithms

Since there are so many diverse approaches to sorting, hundreds of sorting algorithms have been

proposed, for both serial and parallel machines. This section reviews some of the most practical

parallel sorting algorithms, focusing on algorithms that have already been efficiently implemented

on supercomputers. (For a broader treatment of parallel sorting, see the surveys by Aid [I] and

R/chards [31]). The purpose of the section is to outline the current state of the art in practical

parallel sorting algorithms so that these might be referenced when looking for an efficient sorting

algorithm for a new machine. The sorting algorithms we consider can be categorized into three

general clmmes: counting-based sorts, _zed-_opology sorts, and partstion_ng sorts.

3 SORTING ALGORITHMS 5

3.1 Counting-based sorts

Counting-based sorts work by treatingkeys as integersin the range (0...(m- I)} . Unlike

comparison-based sortssuch as quicksort[18],counting-basedsortsdetermine the orderingof keys

by counting the number of occurrencesof each possiblevalue,ratherthan by comparing pairsof

keys. Counting sortsare an attractivealternativeto comparison-based sortssincefor n keys they

run in O(n) instead of O(n lg n) time.

Stable counting sorts are important as building blocks for radiz sorts, which are used for sorting

integers that are too large to be sorted in a single application of a counting sort. Radix-based sorts

work by breaking keys into digits and sorting one digit at a time using a counting sort. For example,

a 32-bit integer could be treated as four 8-bit digits. The digit size is usually chosen to minimize the

running time and is highly dependent on the implementation and the number of keys being sorted.

The most common version of radix sort starts from the least significant digit and works only if the

ordering generated in previous passes is preserved. In that case the counting sort must be stable.

One way to parallelize counting sort is to assign a different range of keys to each processor. For

example, Baber's radix sort for Intel Touchstone Delta [3] performs a counting sort on values in the

range (0... (p - 1)) by assigning one bucket to each of the p processors and sending all keys with

value i to processor i. While this algorithm works well for uniformly distributed keys, non-uniform

distributions can cause a severe degradation in performance, and in the worst case, the algorithm

can exceed the available memory. A similar approach to parallelizing counting sort, Dagnm's qnene-

sort [13] for the Connection Machine CM-2, uses a fixed amount of memory for any distribution, but

has a running time that depends heavily on the distribution. Furthermore, queue-sort is not stable

because it is based on a parallel communication primitive that enqueues messages in an unspecified

order. Thus it can not be used to build a radix sort. However, queue-sort is efficient for its intended

application to particle simulation.

Another approach to parallelizing radix sort assigns a separate set ofrn buckets to each processor,

allowing each processor to compute a histogram using only local computation. The histograms are

then combined using parallel summing operations [20]. This parallel radix sort algorithm has been

efficiently implemented on the CM-2 [8], CM-5 [37], and Cray Y-MP [43]. This algorithm has the

advantages that it is stable, and that the time to compute the rank of the keys does not depend

on the distribution. (However, on some machines the time to permute the keys based on the rank

depends on the permutation. See Mansini's version of radix sort [25] for a version of radix sort that

is completely distribution-independent.)

There are two minor disadvantages to radix sort: it does not perform well with large keys, since

the running time is proportional to the key size, and it can not be executed in place (i.e. with no

temporary memory). However, radix sort has several advantages over other sorting algorithms. It

is simple to implement, deterministic, load-balanced, stable, fast for short keys, and fairly efficient

3 SORTING ALGORITHMS 6

over a wide range of problem sizes. Furthermore, a radix-based rank operation can be implemented

at no additional cost compared to a radix sort.

3.2 Fixed-topology sorts

Fixed-topology sorting algorithms are algorithms that use a fixed interconnection network between

the processors, such as a hypercube or a grid, and that require no data-dependent communication

patterns.

The earliest and most famous of the fixed-topology sorts is Batcher's bitonic sorting network [6] 1.

There have been several implementations of Batcher's bitonic sort on parallel machines. These

include an implementation for the CM-2 [9], the Carnegie Mellon/Intel iW_ [36] and the Maspar

MP-1 [28, 17] as well as several others [34, 32]. If there are multiple keys per processor and a

sequential merge is used after each communication, then the asymptotic running time for sorting

n keys on a p processor hypercube is O((n/p)(lgn-4-lg_p)) [20] sad on a 2-dimeusional grid it is

O((n/p)(lg n+v_) [38]. Because of the small constant in the algorithm and the simple and oblivious

communication pattern, the sort is quite efficient on most parallel machines, and it is often used as

the sort to which other sorts are compared.

In addition to Bitonic sort, there are several other sorting algorithms that have oblivious routing

patterns. Out of these both colurnnsort [23] and smoothsort [12] are reasonably practical when the

number of keys is much larger than the number of processors (for p processors, colunmsort requires

pS keys to run most efficiently). Columusort has been implemented on the CM-5 with running

times that were not as fast as some of other sorts on the CM-5 (including radix and sample sorts),

but which for a large number of keys were within a factor of 2 of the best running times [40].

Considering that the CM-5 is not a hypercube, for which the sort is designed, this is a reasonably

good performance.

The main advantages of fixed topology sorts is that their communication performance is oblivious

to the distribution of the keys, and they are well suited for direct implementation on machines that

don't efficiently support dynamic or irregular communication patterns. The disadvantage is that on

mar.hines that do have efficient point-to-point communication, the fixed-topology sorts can require

more communication than other sorts. An additional advantage of bitonic sort is that it can be

executed in place requiring no additional memory. However, this prohibits the use of local merges,

making the running time O((n/p) lg 2 n).

1Batcher Jdso suggested 8 related sorting network called An odd-ev¢_ merging network, but _ it is not as

compouble as the bit_nlc network, it has not bem_ used as much in practice

3 SORTING ALGORITHMS 7

3.3 Partitioning sorts

Partitioning sorting algorithms select a subset of the keys that partition the data and then use these

partition elements to route keys to separate sets of processors. There are two main subcategories of

partitioning sorts: parallel quicksorts, and sample sorts.

Several parallel variations of quicksort have been suggested, each of which uses a single key at each

level of the recursion to partition the data. The simplest variation runs the recursive calls to quicksort

in parallel [33]. This variation does not offer very much parallelism since only a single processor

is used for the initial partitioning: this partitioning requires O(n) time, so one can only expect an

O(lg n) speedup over the serial algorithm. Wagar suggested a variation called hyperquicksort [39]

that does the partitioning in parallel. The algorithm uses a hypercube connection topology, but the

message traffic is not oblivious to the data. This sort initially distributes the keys evenly among the

processors and at each step picks a pivot, distributes the pivot across the machine, and sends all the

keys less than the pivot to one side of the hypercube and the greater keys to the other (this split is

always done across the highest dimension of the subcube). This is applied recursively within each

subcube. It is very important to pick a pivot that closely balances the two halves otherwise the load

on the processors can become extremely imbalanced. Hyperquicksort has been implemented on the

NCUBE/10 [39] and the NCUBE/7 [29]. On the NCUBE it was shown to be about twice as fast

as bitonic sort, but this was based on randomly generated keys (which would be expected to be a

good distribution for the sort). Another variation of quicksort allocates a fair number of processors

to each recursive call so that picking bad pivots will not lead to load imbalance [8]. This variation

is based on using segmented scans and has been implemented on the CM-2. Because of relatively

high communication costs it is not competitive with the sample sort algorithm discussed below.

Another partition based sort is sample sort [16, 19, 30, 34, 41]. Variations of sample sort have

been implemented on the CM-2 [9], the Maspar MP-1 [17], the CM-5 [42], and the Ametek/S14 [24]

and are the most efficient sorts for most of these machines. Assuming n input keys are to be sorted

on a machine with p processors, the sample sort algorithm proceeds in three phases:

1. A set of p - 1 "splitter" keys are picked that partition the linear order of key values into p

"buckets."

2. Based on their values, the keys are sent to the appropriate bucket, where the ith bucket is

stored in the ith processor.

3. The keys are sorted within each bucket.

If necessary, a fourth phase can be added to load balance the keys, since the buckets do not typically

have exactly equal size.

Sample sort gets its name from the way the p- 1 splitters are selected in the first phase. From

the n input keys, a sample of p# _ n keys are chosen at random, where s is a parameter called the

4 EVALUATING SORTING PERFORMANCE

oversampling ratio. This sample is sorted, and then the p - 1 splitters are selected by taking those

keys in the sample that have ranks s, 26, 38,..., (p - 1)s. It can be shown that if the samples are

picked at random then it is extremely unlikely that any one bucket is more than a small constant

larger than the average size bucket [9]: this is true independent of the initial distribution. Some

variations of sample sort use splitters that are chosen deterministically [34], but these can have very

bad performance with certain key distributions.

The main practical advantage of sample sort is that it greatly reduces the communication required

over most of the other sorting algorithms. If there are enough keys per processor (more than p) then

the splitters can be broadcast to all the processors without a serious overhead, and the data can

be routed to its final destination with a single message. However, because of the need to distribute

the splitters and the need to sort the sample, it does not work well when there are a small number

of keys per processor. The cost of distributing the p splitters to each processors can be alleviated

by running multiple passes [17], but this adds to the communication costs. Another disadvantage

of sample sort is that the buckets are not perfectly balanced at the end. This can require extra

memory and extra communication to balance the data.

4 Evaluating Sorting Performance

Sorting data is often the dominating cost for any system that makes use of it. It is for this reason that

so much has been written and so many algorithms have been developed and analyzed. For any real

world application of sorting, however, the order analysis of an algorithm can often be of secondary

consideration compared with the constants involved, and it may be that for particular problems

certain algorithms may work significantly better than others. We have already seen some of this in

the algorithms already mentioned; for uniform data distributions bucket sorts or unbalanced radix

algorithms may suffice. For very large keys, counting sorts, such as radix, are unlikely to be optimal

and for large amounts of data, partitioning algorithms such as sample sort become optimal. Though

generally true, these observations provide no systematic way to evaluate various sorting algorithms

in the context of both the sorting job at hand and the computer architecture it is being implemented

on. In this section we will formalize some existing terminology for describing sorting and introduce

and formalize four dimensions of sorting problems that affect performance.

In choosing a sorting implementation for a particular application there are usually only two main

constraints:

I. That the sort be fast.

2. That the data really end up in "sorted" order.

The first constraint is obvious and perhaps the only one usually considered. This is understandable

as speed is important and sorting is ¢omputationally demanding. It may then seem peculiar that

4 EVALUATING SORTING PERFORMANCE

our second constraint concerns what "sorted" really means. So much has been written about sorting

that deciding whether a data set is or is not "sorted" should be well defined. This is not the case.

There are many subtle but important variations on sorting. For instance, questions of stability and

determinism may be far more important in the choice of a sorting algorithm than overall speed. Even

the term "sorted order" is not well defined when considering parallel architectures with distributed

memory.

Finding a precise definition of "sorted order" that is independent of machine architecture is

difficult. For a serial machine it is generally assumed that "sorted order" requires neighboring

elements of the sorted sequence to be allocated to adjoining memory locations. For a distributed

memory machine this corresponds to block ordering, where each neighboring element of the sorted

sequence is a neighboring element in each processor's memory except for required breaks between

processors. However, it also is possible to allocate the sorted keys in a cyclic ordering, where

neighboring elements of the sorted sequence are in the memories of neighboring processors. Either

allocation pattern may be optimal for different applications hut for our purposes we will assume

something like block ordering, where neighboring elements in the sorted sequence are "near" each

other in memory.

With this definition of sorted order we can state three formal requirements that must be met in

order for a data set to be considered sorted:

.

2.

.

No elements are created or lost.

Each successive pair of values in the sorted sequence must pass the comparison test used in

sorting the data.

Successivepairs of valuesinthe sortedsequence achievemaximal data localitywhile contained

within a singlelevelof the memory hierarchyof the computer system on which the sort is

implemented. Preferably,thismemory levelwillbe highestin the hierarchy.

4.1 Sorting Descriptors

These three requirements for sorting are rather general and cover almost every implementation of

sorting on any architecture. To refine the distinction between sorting implementations, several other

descriptors can be used. The user must determine whether these features are necessary as they will

affect the overall performance. The following questions should be considered:

i. Isthe sortstable?

2. Isthe sort deterministic?

3. Isthe sort memory efficient?

4 EVALUATING SORTING PERFORMANCE 10

4. Is the sorted data balanced in memory?

5. Does the cost increase if a rank is performed instead?

6. Is the sort easily extended to include complex keys?

4.1.1 Stability

We have already seen how stability can be important if a counting sort is used as one of the passes

for a sort being performed on multiple keys (as in the radix sort). For the radix sort, stability is

required for the sort to work at all but it incurs no additional cost. In the cases of partitioned sorts

such as sample sort and fixed-topology sorts such as bitonic, stability is accomplished by appending

the starting position of the data to the least significant bits of the key. This incurs a cost throughout

the algorithm as the element being sorted may be considerably longer than the original key.

4.1.2 Determinism

It may or may not be important to have the sort run in exactly the same amount of time whenever

it is called on the same data. The fixed-topology sorts, such as bitoni¢, are oblivious to the data

or its initial allocation in memory and will always take the same amount of time. The counting-

based sorts are, however, dependent on the communications network to perform random or irregular

permutations. Because of this their running time could vary if the communications network is non-

deterministic or if the initial allocation of the data to memory is changed causing different routing

patterns which may or may not be more efficient for the given architecture. Partitioning algorithms

such as sample sort suffer a similar fate and, in addition, their performance can also vary due to

even slight variations in the random sampling of the splitting values. In this case poor sampling

could result in an overload for a given bucket which would result in a longer local sort time or even

an overflow where the algorithm might have to be restarted with a different random sample.

4.1.3 Memory Efficiency

The maximum amount of additional memory used by a sort in any part of its run determines the

maximal number of elements that can be sorted in memory. For external sorting, where the data

does not fit within usable memory, it can also affect the run time of the algorithm. This is because

the number of passes through the data and the number of random disk accesses performed by most

external algorithms is based on the amount of data that can be sorted in memory. Thus it is

conceivable that a slower yet more memory efficient sort might be the optimal choice as part of a

large external sorting implementation.

4 EVALUATING SORTING PERFORMANCE 11

4.1.4 Data Balance

For distributed memory parallel computers the third constraint of our basic definition may not be

strong enough. Neighboring elements in the sorted sequence may be "near" each other in terms of

the memory hierarchy (i.e. they are in successive memory addresses in each processor's memory),

but there may be many more sequence elements in one processor's memory than in another's. For

some uses of internal sorting this will be satisfactory. In other cases this will produce an imbalance

in the amount of processing required of different processor nodes which will result in an overall

increased cost. In such cases the data can be easily balanced with an additional enumeration and

permutation. In cases such as an external sort where all the data is subsequently permuted and

written to disk or in the implementation of a send-with-add permutation where memory collisions

are summed, rebalancing the sequence is unnecessary. Counting based sorts and fixed-topology sorts

do not result in unbalanced data allocations but partition based sorts such as bucket sort [11] and

sample sort usually will.

4.1.5 Rank

Sorts are often used to implement ranks. Normally a rank is preferable to a sort when each key is

only a piece of a much larger data element that must be permuted in memory based on the key.

Since sorts are often extended in this way it is useful to consider the increase in complexity of the

system and performance would be incurred with a rank. A rank can be implemented from a sort by

appending a return address to each key and when the keys are in sorted order the enumeration of

their positions is returned to this address as the rank. Since stability is often achieved by appending

the initial position of the data element to the key, this tag can then also be used as the return

address of the rank. For radix and for balanced sample sort this does not even incur the cost of an

additional permutation. For fixed-topology sorts such as bitonic, which are not stable, appending

the initial position to the key can significantly increase the total cost of the algorithm.

4.1.6 Complex Keys

Though this paper is directed toward current supercomputer applications which typically involve

sorting floating point numbers or large integers there are significant applications in sorting of

databases where the keys are made up of complex combinations of smaller fields. Any sort that

can sort integers can be used to sort floating point values by converting the float into an integer

representation that achieves the same sorted order as the float and then translating back to the

floating point format. For real world databases such a conversion to a comparable integer format

may be difficult. An example might be sorting a payroll database where employees are sorted in

descending order by salary and within the groups of employees with the same salaries by last-name

and then first name in alphabetic order. With comparison based sorting such as bitonic and some

4 EVALUATING SORTING PERFORMANCE 12

implementations of sample sort this is made relatively easy by defining a comparison function. It is

unlikely that a counting sort such as radix would be universally helpful in this case as the conversion

of the complex keys to integers might be difficult and the resulting keys may be rather long.

4.2 Dimensions of Sorting Performance

The implementation or lack of implementation of any of the above descriptors may have an effect on

the performance of the sort but in general they are constant multiplicative or additive factors. There

are, however, factors that quantitatively affect sorting performance to different degrees depending

on their magnitude. Once defined we can look at the performance of a sort along any of these axes

and determine how well it will perform for the particular application. We have noted four particular

dimensions along which sorting performance should be measured:

1. The number of elements being sorted

2. The size of the key

3. The distribution of key values

4. The initial allocation of data to memory

It would be nice if within this four dimensional space we could give performance figures for various

implementations of sorting algorithms. It would also be desirable for there to be a standard measure

of performance for sorting. The MSOPS (Millions of Sorting Operations per Second) measure has

been used in [9] and [37], but unlike the the analogous MFLOPS measure it is highly dependent on

many different factors and must be used only within the context of the full description of the sort

and the four performance dimensions. For example, consider that for a distributed memory parallel

supercomputer a very high MSOPS rating would likely be achieved with a radix sort on a sequence

with a small size key requiring a single permutation to sort. Such an MSOPS rating would not

reflect the performance for extremely large key sizes where many permutations would be required.

Given these caveats, MSOPS is a useful measure of sorting performance.

4.2.1 Number of Keys

The number of keys is often the single most important factor determining the performance of a

sorting algorithm. For a given architecture, some algorithms, such as bitonic sort, perform well for

a small number of keys. Other algorithms, such as sample sort, pay a high initial cost but become

progressive more efficient as the number of keys increases [9].

5 IMPORTANT EVALUATION TEST CASES 13

4.2.2 Key Size

All sorting algorithms are dependent on the size of their key since key size multiplied by the number

of keys reflects the total amount of data that must be permuted, and counted or compared. This is

true for bitonic sort, sample sort and radix sort. In the case of radix sort, however, the key size also

affects the number of permutations that must be performed and the size of the histogram used in

counting.

4.2.3 Data Value Distribution

Certain algorithms such as unbalanced radix sort [3] and bucket sort [11] behave poorly when the

distribution of data values is non-uniform. In the worst case, where all values are identical, the

entire data set will be allocated to and sorted by a single processor. Fixed topology sorts such as

bitonic sort are unaffected by data distribution. Other algorithms can exploit non-uniformity in the

data. If, for example, the data distribution is sparse (e.g. for 1 million elements there are only 100

different key values for a 64 bit key) it may be advantageous to use a hash table for element counting

in the radix sort rather than a histogram. Additionally there may be cases where bits of the key

are uniform across all elements and these can be noted and ignored in a radix implementation. To

generally categorize the amount of skew of the dataset values Thearling [37] introduced an entropy

measure that will he used here also.

4.2.4 Initial Data Allocation

The initialdata allocationcan also have a significantimpact on performance. It isdifficultto

characterizeallpossibleallocationsthat might incur performance penaltiesas thisishighly depen-

dent on the machine architecture.However, there are severalallocationpatternsthat are common,

such as initiallypresorted and reversesorted data. These cases can have significantimpact on the

performance of the sort. For example, the sample sort can take advantage of presorted data by

avoidingmost interprocessorcommunication while fixedtopology sortssuch as bitonicpermute the

data between processorsequallyfor any initialdata allocation.

5 Important Evaluation Test Cases

Having somewhat formalized the description of sorting problems and the dimensions on which the

performance should be measured we now specify some test cases that will exercise sorting implemen-

tations along these dimensions. A thorough exploration of each of these dimensions in combination

is not possible in a reasonable amount of time. Instead several cases have been chosen that reflect

realworld problems in both the scientificand commercial community. To keep the testcases to a

reasonablenumber only one parameter isvaried at a time. This isnot the perfectway to collect

5 IMPORTANT EVALUATION TEST CASES 14

the performance data but it should be sufficient to allow potential users to evaluate the strengths

and weaknesses of each sorting implementation. Table 1 summarizes the the base test case and its

variations as described below.

5.1 Defining a Base Case

In order to measure the relative changes in performance as each dimension is varied, a base test

case is defined consisting of approximately one hundred million elements (227), 64 bit keys, random

values, and randomly allocated distribution. One hundred million elements may seem a high for

the base case but it is still one order of magnitude less than the billion element sorts reported in

[37] and [3] and should fall squarely in the middle of interesting results in the near future. (It is

interesting to note that the size of our base case for internal sorting is eight times the size of what

was the standard benchmark for external sorting in 1985 [2]). The base case key length is 64 bits as

this corresponds to the common case of sorting double precision floating point numbers.

5.1.1 Variations in Number of Keys

The number of keys is varied from 217 to 234 in multiples of 8. This range is broad enough to exercise

any current supercomputer but may have to be expanded in the future.

5.1.2 Variations in Key Size

Though single and double precision floating point numbers (32 and 64 bits) are perhaps of most

interest in scientific sorting, smaller keys are also of interest when sorting pointers for example or

in some physical applications [5]. With the advent of the commercial use of supercomputers sorting

will also be applied to problems where key sizes are very large. When sorting character strings, for

example, several textual words, of some five bytes each, will not be uncommon. Thus the key sizes

are varied from 8 to 256 bits in logarithmic steps.

5.1.3 Variations in Key Distribution

The key value distribution is varied according to the 6 entropy values presented in [37]. It should

be noted that there are two possible interpretations of the word "distribution." The first refers to

the probability distribution of the values of the keys (e.g. Are low-valued keys more common than

high-valued keys?). The second interpretation refers to the way in which the keys are physically

placed initially in the memory (e.g. Are the keys already in sorted order? Are they in reverse sorted

order?). This section refers to the first of these two interpretations.

fJg=+N-11 po_ible key distributions [21]. If there are one billionFor N 32-hit keys, there are _ _s=-I /

keys, this number is 1011s6¢ssesg. Obviously it would be impossible to characterize the sorting

performance over any but a very small subset of these possibilities.

5 IMPORTANT EVALUATION TEST CASES 15

One technique which has often been used to characterizethe distributionof data isentropy

measurement. The Shannon entropy [35]of a distributionisdefinedas _pi [logp_[where Pi isthe

probabilityof symbol i occurringin the distribution.Ifthe logarithm isbase 2,the entropy of the

key distributionspecifiesthe number ofunique bitsin the key. For example, ifevery key had the

same value (say 927), the entropy of the key distributionwould be 0 bits.On the other hand, if

every possible32-bitkey were representedthe same number oftimes (i.e.,a uniform distribution),

the entropy ofthe keys would be 32 bits.Inbetween thesetwo extremes are entropiesofintermediate

values.

In many realworld databases therewillbe fewer bitsofentropyfora distributionthan bitsinthe

data structurerepresentingthe key. Customer account numbers are a good example of this.Often

not allpossibleaccount numbers are used or itmay be the case that certainprefixdigitsare used

to organize the data. For example, a leadingorder digitof I in an account number might specify

commercial customers while a leadingorder digitof 2 might specifyindividuals.No other leading

order digitsare allowed. Assuming an eightbit characterrepresentationof the digits,the 8 bitsin

the characterare used to representa I bit quantity.

The goal of thiswork isto evaluatesortingalgorithmsas the entropy ofthe key data isvaried.

To evaluate an algorithm, itisnecessary to eithermeasure the entropy of a testset or generate

a testset with a specifiedentropy. We have chosen to generate key data which spans a range of

entropy values.To accomplish this,there are many possiblealgorithms.One techniqueisto simply

take a uniform setof keys with 32 bitsofentropy and zeroout the leadingorder N bits.This does

generate keys with 32 - N bitsof entropy,but does so effectivelyby changing the key sizeand so

isundesirableforour purposes. What isdesiredisa techniquefor producing keys whose individual

bitsare between 0 and 1 bitofentropy.There are varioustechniquesforperforming thistask,and

one such method isproposed here.

The basicideaisto combine multiplekeys having a uniform distributionintoa singlekey whose

distributionisnon-uniform. The combination operation tobe used isthe binary AND. For example,

take two 32-bitkeys generated using a uniform distributionsuch that the individualbitsas well as

the two keys are independent. In thiscase,each bitof the keys willhave a .50/.50chance of being

eithera zeroor a one. Ifthe two keys are ANDed together,each bitwillnow be threetimes aslikely

to be a zero as a one (.75/.25).This produces an entropy of .811 bitsper binary digitfora total

of 25.95 bitsforthe entirekey (out of a possible32 bits).Repeating thisprocessusing additional

uniform keys,the entropiesof the key distributionscontinue to decrease. The differencebetween

successiveANDings isapproximately twenty percent of the totalfor the firstfiveANDings. The

exactpercentages(ofI bitofentropy per binarydigit)are asfollows:1 ANDing - 100%, 2 ANDings

- 81%, 3 ANDings - 54%, 4 ANDings - 38%, and 5 ANDings - 20%. Ittakes an infiniteamount of

additionalwork to decrease the entropy completely to zero through thisprocedure. However, zero

entropy can be easilyobtained by simply settingallof the keys to the same value.

6 CONCLUSION 16

Though this entropy measure captures much of what we would like to notice about non-uniform

distributions there are perhaps two common distributions that could be exploited by many algorithms

but are not easily constructed in this way. The first is a "sparse distribution" where only 8 bits of

the 64 bits of the key are aUowed to differ from zero. Thus only 256 different values will actually be

obtained in the distribution though there is a possibility of 264. This distribution can be constructed

by generating random 8 bit numbers from 0 through 255 and then inserting seven zeros between

each bit to construct a full 64 bit key. This distribution can be exploited by certain radix algorithms

that check for variance in each bit of the key before counting or that replace the histogram in the

counting step with a hash table.

A further variation which is almost the same as the sparse distribution but which can not be

exploited by radix as above would be ff 99% of the values were sparse as above but the remaining

1% were random. This distribution can be generated by generating a random number between 0.0

and 1.0 and wherever this value is 0.99 or less generating the key via the above sparse distribution,

elsewhere it can be generated from a random number from 0 to 264.

5.1.4 Variations in Key Allocation

As stated previously, key allocation in memory both before and after the sort is difficult to define

since it is architecture dependent. Having decided that "sorted order _ corresponds to block order,

it is much more difficult to say which layouts of the original data will or will not be difficult for the

given architecture to permute. However, there are four cases that are relatively common and should

be tried. They include the combination of block layout and cyclic layout for both presorted and

reverse sorted data.

5.1.5 Table of Test Cases

Table 1 summarizes the test cases described in the previous subsections. The four parameters to be

varied are listed across the top, and the base case is listed in the first row. Below this row there is

a 4 × 4 matrix of blocks where the off-diagonal blocks simply specify base case parameters and the

diagonal blocks specify the parameter variation.

6 Conclusion

The ability of a supercomputer to manipulate large amounts of data will determine the future of

supercomputers in non-numeric processing, and a standard benchmark in this axes is necessary for

both algorithmic and technological advances to be gauged. Sorting is a prototypical data movement

task which measures a number of important system performance characteristics including commu-

nication bandwidth and integer computation performance. It is important in both scientific and

6 CONCLUSION 17

No. of Keys Key Size Value Distribution Allocation Distribution

2 _v 64 bits Random Random

217

220

224

230

2s4

227

227

64 bits

8 bits
16 bits

32 bits

128 bits
256 bits

64 bits

2_v 64 bits

Random

Random

Entropy - 0.811
Entropy - 0.544

Entropy = 0.337

Entropy = 0.201

Entropy -- 0.0

Sparse 256

Sparse 256/Random

Random

Random

l_.ndom

Random

Presorted Block Order

Presorted Cyclic Order
Reverse Sorted Block Order

Reverse Sorted Cyclic Order

Table 1: Test cases for supercomputer sorting benchmark.

7 ACKNOWLEDGMENTS 18

commercial applications of supercomputers and is a natural choice for a benchmark.

In specifying such a benchmark, variation in the size and distribution of sorted data is necessary

to accurately measure how an algorithm/architecture pair performs over a representative range of

situations. To this end, a formal set of rules that define a rigorous suite of sorting benchmarks are

proposed. These benchmarks requires that large amounts of data be sorted (at least 100 million

keys) while varying a number of other parameters (key size, data distribution). These benchmarks

can be applied to any of the currently existing supercomputer systems, from single processor vector

systems to massively parallel processing systems. With future advances in memory technology,

supercomputer systems will be able to process much larger amounts of data. The sorting benchmark

will scale with increasing memory capacity to capture the non-numerical performance of future

supercomputers.

7 Acknowledgments

The authors would like to thank Steve Heller and Mark Bromley for valuable discussions during

the development of this paper, and Eric Bsrszcz for his many insightful comments on review of the

manuscript.

References

[1] S. G. Aid. Parallel Sorting Algorithms. Academic Press, Toronto, 1985.

[2] Anon et al. A measure of transaction processing power, In Datamation, 1985.

[3] M. Baber. An implementation of the radix sorting algorithm on the Touchstone Delta prototype. In

Proceedings of the Sixth Distributed Memory Computing Con]erence., Portland, Oregon, May 1991.

[4] Bailey, D.H., sad Barton, J.T., The NAS Kernel Benchmark Program, Technical Report 86711, NASA
Ames Itesearch Center, Moffet Field, CA, 1988.

[5] Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, It.L, Dagum, L., Fatoohi, K.A., Fred-
erickson, P.O., Lasinski, T.A., Schreiber, It. S., Simon, H.D., Venlmtakrishnsa, V., and Weeratunga,
S.K., The NAS Parallel Benchmarks, The International Journal of Supercomputer Applications, vol.
5, No. 3, pages 63-73, 1991.

[6] K. B,,tcher. Sorting networks sad their applications. In Proceedings o] the AFIPS Spring Joint Com-
puting Conference, volume 32, pages 307-314, 1968.

[7] Berry, M., Chert, D., Koss, P., Kuck, D., Lo, S., Pang, Y., Pointer, L., Reloff, It., Sumeh, A., Clementi,
E., Chin, S., Schneider, D., Fox, G., Messina, P., Walker, D., Hsiung, C., Schwarzmeier, J., Lue,
K., Orssag, S., Scidl, F., Johnson, O., Goodrum, IL, Martin, J., The PERFECT Club Benchmarks:
E_ective Performance Evaluation of Supercomputers, The International Journal of Supercomputer

Applications, vol. 3, No. 3, pages 5-40, 1989.

[8] G. E. Blelloch. Vector Models]or Data-Paeallel Computing. The MIT Press, Cambridge, MA, 1990.

KEFEP_EN CES 19

[9] G. E. Blelloch, C. E. Leiserson, B. M. Magss, C. G. Plaxton, S. J. Smith, and M. Zagha. A comparison of

sorting algorithms for the Connection Machine CM-2. In Proceeding8 Symposium on Parallel Algorithms

and Architectures, pages 3-16, Hilton Head, SC, July 1991.

[10] Camevali, P., Timing ResultJ o] Some Internal Sorting Algorithms on the IBM.3090, Pazalld Com-

puting, vol. 6, p,_ses 115--117, 1988.

[11] T. H. Carmen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, Cambridge,
MA, 1990.

[12] R. E. Cypher and C. G. Plaxton. Deterministic sorting in nearly logarithmic time on the hypercube
and related computers. In Proceedings of the £2nd Annual A CM SIImpoaium on Theory of Computing,

pages 193-203, May 1990.

[13] L. Dagum. Parallel integer sorting with medium and £ne-scale parallelism, Int 3 High Speed Computing,

Vol. 5, No. 1, (to appear) 1993.

[14] Dongarza, J., The LINPACK Benchmark: An Explanation, Supercomputing, Spring, pp. 10-14, 1988.

[15] Fzands, IL S, and Mathieson, I. D., A Benchmark Parallel Sort for Shared Memory Multiproceuors,

IEEE Transactions on Computers, vol. 37, no. 12, pages 1619-1626, 1988.

[16] W. D. Frazer and A. C. McKellar. Samplesort: A sampling approach to minimal storage tree sorting.

Journal of the ACM, 17(3):496-507, 1970.

[17] W. L. Hightower, J. F. Prins, J. H. Reif. Implementations of randomized sorting on large parallel
machines, In Proceexlings Symposium on Parallel Algorithms and Architectures, 158-167, July 1992.

[18] C. A. R. Hoare. Qulcksort. Computer 3, 5(1):10-15, 1962.

[19] J. S. Huang and Y. C. Chow. Parallel sorting and data partitioning by sampling. In Proceedings of

the IEEE Computer Society's Seventh International Computer Software and Applications Conference,

pages 627-631, November 1983.

[20] S. L. Johneson. Combining parallel and sequential sorting on a Boolean n-cube In Proceedings of the

International Conference on Parallel Processing, pages 444--448, August, 1984.

[21] D. Knuth. The Art of Computer Programming: Fundamental Algorithms. Addison-Wesley: Reading,
MA, 1968

[22] F. T. Leighton. Introduction to Parallel Algorithms and Architectures. Morgan Kanfmann, San Mateo,
CA, 1992.

[23] F. T. Leighton. Tight bounds on the complexity of parallel sorting. IEEE Transactions on Computers,

C-34(4):344-354, April 1985.

[24] P. P. Li. Parallel sortin 8 on Ametek/S14. Technical report, Ametek Computer Research Division,
Arcadia, CA, September 1986.

[25] G. Mm. Radix sort on the hypercube. Infozmatien Proceming Letters, 38(2):77-81, April 1991.

[26] McMshon, F. H., The Livermore Fortran Kernels: A Computer Te#t of the Numer/ca/Performance

Range, Technical Report UCPH,-53745, Lawrence Livermore National Laboratory, Livermore, CA, 1986.

[27] Mmcinski, J., Rycerz, Z. A., and Jacob:s, P. W. M., Timing Results of Some Internal Sorting Algorithms

on the ETA IO-P, Parallel Computing, vol. 11, pages 117-119, 1989.

REFERENCES 20

[28]J.F. Prins.EfficientBitonicsortingof largearraysontheMasParMP-1Proceedingsof the3rd
SympmiumonFrontiersofMassivelyparallelComputation,pages188-167,October,1990.

[29]M. J. Qninn. Analysis and benchmsrking of two pars]lel sorting algorithms: hyperquicksort and

quickmerge. BIT, 29(2):239-250, 1989.

[30] J. H. Reif sad L. G. Valiant. A logarithmic time sort for linear size networks. Journal o/the A CM,

34(1):80-76, January 1987.

[31] D. Richards. Parallel sortiag--a bibliography. ACM SIGACT News, 28-48, 1986.

[32] W. 116nsch sad H. Strauss. Timing results of some interns] sorting s]gorithms on vector computers.

Parallel Computing, 4, 49-61, 1987.

[33] I_ Sedgewick. Implementing quicksort programs. Communications of the ACM, 21(10):847-857,1978.

[34] S. R. Seide] sad W. L. George. Binsortiag on hypercubes with d-port communication. In Proceedings

oJ the Third Conference on HDTJercobe Concurrent Computera, pages 1455--1461, January 1988.

[35] C. Shannon and W. Weaver. The Mathematical Theory oJ Communication. University of minois Press:

Urbsaa, IL, 1949.

[36] T. M. Stricker. Supporting the hypercube programming model on mesh architectures (A fast sorter for
iWarp tori). In Proceedings S_npoaium on Parallel Algorithm8 and A rchitecturea, pages 148-157, July
1992.

[37] K. Thearling and S. Smith. An improved sepercomputer sorting benchmark. In Proceedingl Supercom.

poring '9£, pages 14-19, November 1992.

[38] C. D. Thompson sad H. T. Kung. Sorting on a mesh-connected paraJlel computer, Communications

of the ACM, 20(4):263-271, 1977.

[39] B. A. Wagar. Hyperquicksort: A fast sorting algorithm for hypercubes. In M. T. Heath, edito:,
Hypercube Multiproceuora 1987 (Proceedings oJ the Second ConJerence on Hlo>ercube Multiproceasora),

pages 292-299, Philadelphi=, PA, 1987. SIAM.

[40] K. White, H. Sheng. An Efficient Multiprocessor Column Sort Algorithm on the Connection Ma-
chine CM-5. Unpublished manuscript, Department of Electrical and Computer Sciences, University of

Cafiforni_, Berkeley.

[41] Y. Won sad S. Sahni. A balanced bin sort for hypercube multicomputers. Journal o/Supercomputing,

2:435--448, 1988.

[42] M. Zagha. Sorting algorithms for the Connection Machine CM-S, presentation at Thin_ng Machines

Corporation, September 17, 1992.

[43] M. Zagha and Guy E. Blelloch. Radix sort for vector multiprocessors. In Proceedinga Supercomputin9

'91, pages 712-721, November 1991.

